Presentation Coverage

- **Sustainable development in cleanroom buildings**
 - Energy perspective

- **Techniques and strategies in cleanroom design and operation**
 - Programming, design and construction
 - Cleanroom Systems
 - Optimizing HVAC systems (air and water systems)
 - Improving power systems and process in cleanrooms

- **Examples**

- **Best Practice**
Cleanroom Energy Use

- Chillers and Pumps: 21%
- Recirc and Make-up Fans: 19%
- Process Tools: 34%
- Exhaust Fans: 7%
- Nitrogen Plant: 7%
- Process Water Pumping: 4%
- Support: 3%
- DI Water: 5%

Source: Xu et al. 2002. Lawrence Berkeley National Laboratory Report LBNL-49220, Berkeley, California

Energy Systems

- HVAC Pumps: 20%
- Fans: 30%
- Tools: 12%
- Air Compressors: 2%
- Nitrogen Plant: 12%
- Lighting: 4%
- Plugs: 4%
- Misc: 4%
- Chillers: 14%
Cleanroom Benchmarking

Facility 1
- Hot Water & Steam: 23%
- Chilled Water: 19%
- Cleanroom Fans: 16%
- Other Misc.: 8%
- Process: 13%
- Cleanroom Lights: 1%
- Compressed Air & Process Vacuum: 8%

Facility 2
- Hot Water, Steam, and Cafeteria: 17%
- Total Chilled Water: 20%
- Cleanroom Fans: 27%
- Other Misc.: 10%
- Process: 8%
- Cleanroom Lights: 1%
- Compressed Air: 7%
- Office (Lights, Plugs): 9%

Facility 3
- Hot Water & Steam: 7%
- Office (Lights, Plugs): 6%
- Process: 35%
- Total Chilled Water: 18%
- Cleanroom Fans: 11%
- Process Utilities: 17%
- Other Misc.: 6%
- Cleanroom Lights: 1%

Cleanroom Programming

A hierarchy approach of information gathering for cleanroom programming
- Provides guidance on decisions during programming stage
- Reinforces that energy is an important consideration
Cleanroom Programming

Integrated process of decision-making by disciplines and owners is critical

- Example: Process, Mechanical, Electrical, and Architectural
 - Sizing systems: process, mechanical and electrical interface
 - Low pressure drop: mechanical and architectural interface
 - Airflow requirement: mechanical and controls

Cleanroom Programming

- Exemplar Concepts
 - Minimize clean space
 - Optimize cleanliness level
 - Optimize air change rate, ceiling coverage
 - Consider use of mini-environment
 - Minimize pressure drop
 - Location of large air handlers
 - Airflow path/space for low pressure drop
 - Airflow speed
Cleanroom Systems

- HVAC Air Systems
- HVAC Water Systems
- Power Systems
- Process Systems
- Cross-cutting & Misc. Issues
Recirculation Airflow

In-situ ISO Class 5 cleanroom air speeds and air change rates
Source: Xu 2004, Journal of the IEST

Recirculation Efficiency – SEMATECH
Projection of annual fan kWh cost (fans for air circulation) between year 2002 to 2020 for an 1,000,000 m³/h (or 583,000 cfm) Class 5 cleanroom
Source: Xu 2004, Journal of the IEST

Airflow speed at filter face is the airflow speed at location downstream of the face of the HEPA/ULPA filters
Intense power for re-circulating air

All Recirculation Air Handlers

A higher number of electric power intensity indicates lower delivery efficiency of the recirculation air system

Cleanroom Operation

- Reliability Improvement
 - Controls
 - Set points
- Maintenance
 - Leaks
 - Motors, pumps, Fans
 - Filters
 - Chillers, boilers, etc.
- Safety issues uncovered
 - Hazardous airflow
Example: Cleanroom Systems

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low pressure drop</td>
<td>Variable speed drive chillers</td>
<td>UPS systems</td>
<td>VOC abatement</td>
<td>Motor efficiency</td>
</tr>
<tr>
<td>Recirculation system type</td>
<td>Chilled water controls</td>
<td>Self generation</td>
<td>Minienvironments</td>
<td>Steam systems</td>
</tr>
<tr>
<td>Air change rates</td>
<td>Cooling tower/condenser water optimization</td>
<td>Distribution</td>
<td>Vacuum pump optimization</td>
<td>Variable speed drives</td>
</tr>
<tr>
<td>Demand controlled filtration</td>
<td>Water-side free cooling</td>
<td>DI water generation</td>
<td>Lighting</td>
<td></td>
</tr>
<tr>
<td>Fan efficiency</td>
<td>Variable speed pumping</td>
<td>DI water reduction</td>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Fan-filter units</td>
<td>Duct temperature chilled water loops</td>
<td>Process chillers</td>
<td>Commissioning</td>
<td></td>
</tr>
<tr>
<td>Exhaust optimization</td>
<td></td>
<td>Compressed air systems</td>
<td>Heat recovery</td>
<td></td>
</tr>
<tr>
<td>Exhaust systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Slide 17

Example: HVAC Air Systems

- **Goals**
 - Reduce initial costs
 - optimized sizing
 - Reduce utility costs while benefiting productivity
 - Other non-energy benefits
 - Energy efficient design can be considered as a strategy in the industry to achieve cost savings and improve bottom line
Example: HVAC Air Systems

- **Measures**
 - Low pressure drop
 - Recirculation system type
 - Air change rates
 - Demand controlled filtration
 - Fan efficiency
 - Fan-filter units
 - Exhaust optimization
 - Exhaust systems
Total Pressure Efficiency

Example: HVAC Water Systems

- **Measures**
 - Variable speed drive chillers
 - Chilled water controls
 - Cooling tower/condenser water optimization
 - Water-side free cooling
 - Variable speed pumping
 - Dual temperature chilled water loops
Example: Power Systems

- Measures
 - UPS systems
 - Self generation
 - Distribution

Example: Process Systems

- Measures
 - VOC abatement
 - Minienvironments
 - Vacuum pump optimization
 - DI water generation
 - DI water reduction
 - Process chillers
 - Compressed air systems
Presentation Coverage

• Sustainable development in cleanroom buildings
 – Energy perspective

• Techniques and strategies in cleanroom design and operation
 – Programming, design and construction
 – Cleanroom Systems
 • Optimizing HVAC systems (air and water systems)
 • Improving power systems and process in cleanrooms

• Examples

• Best Practice

Example: Cross-cutting & Misc. Issues

• Measures
 – Motor efficiency
 – Steam systems
 – Variable speed drives
 – Lighting
 – Maintenance
 – Commissioning
 – Heat recovery
 – Right-sizing
Considerations for Best Practice

<table>
<thead>
<tr>
<th>Considerations</th>
<th>Concepts and actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Heat Load</td>
<td>Understand nameplate data which is nominal load information as compared to actual performance of the equipment</td>
</tr>
<tr>
<td>Name plate data</td>
<td>Understand actual load versus design conservatism</td>
</tr>
<tr>
<td>Electric load</td>
<td>Adopt efficient process equipment, transformer and UPS</td>
</tr>
<tr>
<td>Efficient operation</td>
<td>Understand efficiency of partial load and consideration of future expansion</td>
</tr>
<tr>
<td>Contamination Control</td>
<td>Understand and define the actual need for contamination control and define recirculation air change and/or airflow rate</td>
</tr>
<tr>
<td>Cleanliness classification</td>
<td>Optimize fan-speeds</td>
</tr>
<tr>
<td></td>
<td>Define filter coverage</td>
</tr>
<tr>
<td></td>
<td>Define filtration efficiency</td>
</tr>
<tr>
<td></td>
<td>Define airflow uniformity requirements</td>
</tr>
<tr>
<td></td>
<td>Analyze location impact of recirculation and exhaust</td>
</tr>
<tr>
<td></td>
<td>Identify source of contamination</td>
</tr>
</tbody>
</table>

To appear in IEST RP CC012.2 “Considerations for Cleanroom Design” 2007

Considerations for Best Practice

<table>
<thead>
<tr>
<th>Considerations</th>
<th>Concepts and actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make-up and exhaust requirements</td>
<td>Define and optimize airflow rate and airflow pattern</td>
</tr>
<tr>
<td>Optimal environmental requirements</td>
<td>Optimize humidity</td>
</tr>
<tr>
<td></td>
<td>Optimize temperature</td>
</tr>
<tr>
<td></td>
<td>Define particle concentration</td>
</tr>
<tr>
<td></td>
<td>Optimize pressure</td>
</tr>
<tr>
<td></td>
<td>Optimize cascading</td>
</tr>
<tr>
<td>Recirculation air Systems</td>
<td>Adopt performance metrics such as electric power demand (Watt) per airflow rate component efficiency, e.g., fan-filter units</td>
</tr>
<tr>
<td>Optimal Efficiency</td>
<td>Optimize air management design</td>
</tr>
<tr>
<td></td>
<td>Define ranges of Air change and speed targets</td>
</tr>
<tr>
<td></td>
<td>Aim at low pressure drop air handlers and systems uniformly</td>
</tr>
<tr>
<td>Space management</td>
<td>Layout and adjacency to primary cleanrooms</td>
</tr>
<tr>
<td>Optimal Airflows</td>
<td>Right size</td>
</tr>
<tr>
<td></td>
<td>Optimize air management design</td>
</tr>
<tr>
<td></td>
<td>Define ranges of Air change and speed targets</td>
</tr>
<tr>
<td></td>
<td>Aim at low pressure drop air handlers and systems uniformly</td>
</tr>
<tr>
<td>Optimal Filtration</td>
<td>Select filter media and resistance</td>
</tr>
<tr>
<td></td>
<td>Define filtration efficiency</td>
</tr>
<tr>
<td></td>
<td>Provide demand filtration control of particles</td>
</tr>
<tr>
<td></td>
<td>Control with occupancy and scheduling</td>
</tr>
<tr>
<td></td>
<td>Low-pressure drop</td>
</tr>
</tbody>
</table>

To appear in IEST RP CC012.2 “Considerations for Cleanroom Design” 2007

- Slide 28
Considerations for Best Practice

Considerations

<table>
<thead>
<tr>
<th>Make-up and Exhaust Systems</th>
<th>Concepts and actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal Efficiency</td>
<td>Right sizing</td>
</tr>
<tr>
<td></td>
<td>Adjacency</td>
</tr>
<tr>
<td></td>
<td>Duct layout</td>
</tr>
<tr>
<td></td>
<td>Optimal placement, sizing, and filtration</td>
</tr>
<tr>
<td></td>
<td>Duct integrity</td>
</tr>
<tr>
<td></td>
<td>Component efficiency</td>
</tr>
<tr>
<td></td>
<td>Variable speed drive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optimal Airflows</th>
<th>Code requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Process diversification</td>
</tr>
<tr>
<td></td>
<td>Heat exhaust</td>
</tr>
<tr>
<td></td>
<td>Low pressure drop</td>
</tr>
<tr>
<td></td>
<td>Layout of ducts</td>
</tr>
<tr>
<td></td>
<td>Optimal airflow speeds</td>
</tr>
</tbody>
</table>

To appear in IEST RP CC012.2 “Considerations for Cleanroom Design” 2007

Considerations

<table>
<thead>
<tr>
<th>Cooled Water systems</th>
<th>Concepts and actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal System efficiency</td>
<td>Chilled water temperature</td>
</tr>
<tr>
<td></td>
<td>Use of “free cooling”</td>
</tr>
<tr>
<td></td>
<td>Performance target for chillers and systems</td>
</tr>
<tr>
<td></td>
<td>Control for partial load operation</td>
</tr>
<tr>
<td></td>
<td>Efficient pumping</td>
</tr>
<tr>
<td></td>
<td>Variable speed drive</td>
</tr>
<tr>
<td></td>
<td>Adjacency and layout of major equipment</td>
</tr>
<tr>
<td></td>
<td>Low pressure drop water system</td>
</tr>
<tr>
<td>Process cooling</td>
<td>Alternatives to process refrigeration</td>
</tr>
<tr>
<td></td>
<td>Non-compressive cooling</td>
</tr>
</tbody>
</table>

To appear in IEST RP CC012.2 “Considerations for Cleanroom Design” 2007
Considerations for Best Practice

<table>
<thead>
<tr>
<th>Considersations</th>
<th>Concepts and actions</th>
</tr>
</thead>
</table>
| **Electrical systems** | Higher voltage
Power factor
Efficient power supplies
Efficient lighting and controls
Efficient UPS
Efficient motors |
| **Optimal power efficiency** | Efficient process equipment
Right-size
Coordination with mechanical systems |
| **Optimal process load** | |
| **Control systems** | Protocol
Monitoring
Environmental control | Open
Adequate capability
Internet capability
EMCS systems for power and airflow
Humidity
Temperature
Particle
Pressure |

To appear in IEST RP CC012.2 “Considerations for Cleanroom Design” 2007

Cleanroom Best Practice

- **Understanding Loads**
 - Contamination control
 - Process
 - Cleanliness level – ISO Std. 14644-1&2
 - Environmental requirements
 - Temperature
 - Humidity
 - Electrostatics
Cleanliness Classes

Table 1 — Selected airborne particulate cleanliness classes for cleanrooms and clean zones

<table>
<thead>
<tr>
<th>ISO classification number (N)</th>
<th>0.1 μm</th>
<th>0.2 μm</th>
<th>0.3 μm</th>
<th>0.5 μm</th>
<th>1 μm</th>
<th>5 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO Class 1</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO Class 2</td>
<td>100</td>
<td>24</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO Class 3</td>
<td>1 000</td>
<td>237</td>
<td>100</td>
<td>35</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ISO Class 4</td>
<td>10 000</td>
<td>2 370</td>
<td>1 020</td>
<td>363</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>ISO Class 5</td>
<td>100 000</td>
<td>23 700</td>
<td>10 200</td>
<td>3 520</td>
<td>832</td>
<td>29</td>
</tr>
<tr>
<td>ISO Class 6</td>
<td>1 000 000</td>
<td>237 000</td>
<td>102 000</td>
<td>35 200</td>
<td>8 320</td>
<td>293</td>
</tr>
<tr>
<td>ISO Class 7</td>
<td></td>
<td></td>
<td></td>
<td>352 000</td>
<td>63 200</td>
<td>2 930</td>
</tr>
<tr>
<td>ISO Class 8</td>
<td></td>
<td></td>
<td></td>
<td>3 520 000</td>
<td>802 000</td>
<td>29 000</td>
</tr>
<tr>
<td>ISO Class 9</td>
<td></td>
<td></td>
<td></td>
<td>35 200 000</td>
<td>8 320 000</td>
<td>293 000</td>
</tr>
</tbody>
</table>

NOTE: Uncertainties related to the measurement process require that concentration data with no more than three significant figures be used in determining the classification level.

ISO 14644-1 cleanliness classes

Cleanroom Best Practice

- Reducing/optimizing Loads
 - Demand control filtration
 - Sizing
 - Airflow
 - Filtration
 - UPS
 - More…
Cleanroom Best Practice

• Reducing/optimizing Loads
 – Demand control filtration
 • Power-down
 • Setback
 • Particle counting

Cleanroom Best Practice

• Reducing/optimizing Loads
 – Sizing
 • Cooling
 • AHU
 • Cleanroom vs. Minienvironment
Cleanroom Best Practice

- Reducing/optimizing Loads
 - Airflow
 - Recirculation type
 - Recirculation Airflow rates – Air change rate
 - IEST RP12
 - ISO Std. 14664
Cleanroom Best Practice

- Meeting the Load
 - Chiller plant optimization
 - Right sizing
 - Economizer
 - Cooling tower
 - AHU
 - Air distribution
 - Heat exchanger
 - Self or Co-generation

Cleanroom Best Practice

- Chiller plant optimization
 - Chiller specification
 - Chiller Types
 - Air cooled vs. water cooled
 - VSD centrifugal vs. constant
Cleanroom Best Practice

- **Chiller plant optimization**
 - Operation and control of chilled water
 - **Principles:**
 - A larger lift of chilled water temperature makes chilled water system less efficient
 - A higher chilled water supply temperature improves efficiency

Cleanroom Best Practice

- **Chiller plant optimization**
 - Operation and control of chilled water
 - **Rule of thumb:**
 - For a centrifugal compressors-based chiller, an increase of one degree in the chilled water supply temperature improves the efficiency of the chiller by 1 to 2%.
 - **Approaches**
 - chilled water temperature reset
 - differential pressure setpoint reset
Cleanroom Best Practice

- **Chiller plant optimization**
 - Operation and control of chilled water
 - Approaches
 - chilled water temperature reset
 - CHW temperature based on the outside air temperature
 - Chilled water valves in the loop at full position
 - Reduce CHW temperature only when all valve is open 90% or more
 - differential pressure set point reset

- **Chiller plant optimization**
 - Operation and control of chilled water
 - Approaches
 - differential pressure set point reset
 - save power for pumping water
 - based on the cooling valve positions
 - differential set point can be reduced when valve opening decreases
 - Coil to be oversized
Best practices

Consideration of Sizing of air systems
- Minimize clean space
- Correct classification for contamination problem
- Air change rate
- Minimize pressure drop
- VFD's can help
- Exhaust minimization

Best Practices

Factors affecting air flow resistance
- duct size (oversized is good)
- low face velocity
- minimize length of duct/air path
- efficient, low pressure drop filters
- raised floor air resistance (% open)
- size and placement of return air chases
- Use of plenums
Recirculation Setback

- Based solely on Time: 8:00 PM-6:00 AM setback
- No reported problems or pushback
- 60% – 70% power reduction

Recirculation Setback

- **Annual Fan Savings from Daily and Weekend Setback:**
 - 1,000,000 kWh
 $130,000 - $150,000

- **Cooling load reduction when setback:**
 - 120 kW
 35 tons
Energy-Savings Opportunities

- **Chiller**
 - Air-cooled chiller at 1 kW/ton, partially to conserve water
 - Water reuse for tower makeup (2,500 – 4,000 gallons/day rejected to sewer)

- **Space humidity control**
 - Energy intensive dehumidification/reheat
 - Exceeds design and process requirements
 - Reset humidity set-points to design

- **Fan power savings**
 - Control recirculation setback
 - Reduce air change rates

Demand Controlled Filtration

- Demand filtration based on real-time particle concentration measurements

- Fan power proportional to the cube of the flow rate, so small changes can result in large savings
Controlling Air Flow to Maintain Cleanliness

- Save energy by reducing fan speeds without degrading conditions in cleanroom
- Reduction of recirculation fan speed during unoccupied periods or periods of no activity (potential for mini-environments also)

Recirculation Setback

- Based solely on Time: 8:00 PM-6:00 AM setback
- No reported problems or pushback
- 60% – 70% power reduction
Industry Collaboration Essential for sustainable development

- LBNL
- IEST (mini-environment, fan-filter units)
- Sematech
- Silicon Valley Manufacturers Group
- ITRI (Industrial Technology Research Institute, Taiwan)
- Air Movement and Control Association (AMCA)
- ASHRAE

Recommended Practice

- LBNL Standardized method to
 - Produce comparable performance information and identifies most efficient and functional FFUs
 - Stimulate design and applications of energy efficient FFUs
- IEST CC RP036.1 – testing fan filter units
 - Working draft of RP036.1
 - Web Board participation in RP development
Questions