Toward Green Cleanroom Systems: Energy-efficient Fan-filter Units

Ming-Shan Jeng, Industrial Technology Research Institute (ITRI)
Tengfang Xu, Lawrence Berkeley National Laboratory (LBNL)
Chao-Ho Lan, Industrial Technology Research Institute (ITRI)
Presentation Outline

- Introduction
- Purposes
- Approaches
- Results
- Conclusions
- Recommendations
Energy-efficient Fan-filter Units

• Introduction
 – Green cleanroom systems
 • Challenges and benefits
 – Cleanroom energy performance
 • Applications of fan-filter unit (FFU)
 • Opportunities
Cleanroom Energy Use

Facility 1
- Office (Lights, Plugs) 9%
- Chilled Water 19%
- Other Misc. 8%
- Process 13%
- Cleanroom Fans 16%
- Hot Water & Steam 23%
- Cleanroom Lights 1%
- Compressed Air & Process Vacuum 6%
- Process 13%
- Other Misc. 8%
- Process 9%
- Compressed Air 7%
- Cleanroom Fans 27%
- Office (Lights, Plugs) 9%
- Total Chilled Water 20%
- Hot Water, Steam and Cafeteria 17%
Energy-efficient Fan-filter Units

- Purposes
 - Introduce the FFU testing standard and its integration with IEST Recommended Practice
 - Evaluate energy performance of 20 FFUs tested at ITRI
 - Present laboratory-testing results
 - Compare unit performance
Energy-efficient Fan-filter Units

• Approaches
 – Principle
 • Laboratory tests to obtain accurate measurements under various operating conditions
 – Control and Method
 • Ancillary fan and damper to control airflow rates across the FFU tested
 – Device Layout
 • FFU to be mounted horizontally or vertically on the exit of the air chamber
Energy-efficient Fan-filter Units

- Approaches – Device Layout
Energy-efficient Fan-filter Units

• Approaches - Partnerships
 – Industrial Technology Research Institute (ITRI)
 – Institute of Environmental Sciences and Technology (IEST)
 – Air Movement and Control Association International (AMCA)
 – SEMATECH International
 – Suppliers and users
 – CA Energy Commission and utility companies
Energy-efficient Fan-filter Units

• Results
 – Performance Curves
 • Airflow, pressure, total pressure efficiency
 – Energy Performance Index (EPI)
 • Power usage normalized by the airflow rate through an FFU
 • A lower EPI value indicates higher energy efficiency
 – 4’x2’ and 4’x4’ FFUs
Energy-efficient Fan-filter Units

4’x2’

Common Speeds

FFU Pressure Rise (Pa)

Airflow Speed at FFU Exit (m/s)

FFU001
FFU002
FFU003
FFU007
FFU009
FFU010
FFU011
FFU013
FFU018
FFU027
FFU028
FFU029
FFU030
Energy-efficient Fan-filter Units

4’x2’

Common Speeds

Total Pressure Efficiency (%) vs. Airflow Speed at FFU Exit (m/s)
Energy-efficient Fan-filter Units

4’x2’
Energy-efficient Fan-filter Units

4’x4’

Common Speeds
Energy-efficient Fan-filter Units

4’x4’
Energy-efficient Fan-filter Units

• Conclusions
 – Use of the procedure
 • Provides comparable performance information
 • Identifies most efficient and functional FFUs
 – Benefits to the industry
 • IEST RP development for FFU testing guideline
 • Utility incentive programs for “greener” FFU systems
Energy-efficient Fan-filter Units

• Recommendations
 – Test additional FFUs
 – Improve FFU designs such as motor types and fan wheels
 – Develop baseline information for utility incentive programs to encourage using efficient FFUs
 – Integrate LBNL procedure into IEST Recommended Practice guideline and establish an international standard