Air-Handler Systems

<Presenter>
Chilled-Water CRAC Units
Split System Air Cooled CRAC Units
Water Cooled CRAC

Heat exchanger connected to cooling towers at central plant on roof
Underfloor supply

Cold Aisle

Hot Aisle

Only 1 pressure zone for UF!
Overhead supply

You can incorporate VAV on each branch

Overhead Supply

Cold Aisle

Hot Aisle

© 2004, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Reprinted by permission from ASHRAE Thermal Guidelines for Data Processing Environments. This material may not be copied nor distributed in either paper or digital form without ASHRAE’s permission.
How Do You Balance Airflow?

- Spreadsheet
- CFD
- Monitoring, infrared thermography or other site measurements
Air system design overview

• Data center layout
• Airflow configurations
 – Distribution: overhead or underfloor
 – Control: constant or variable volume
• Airflow issues
• Economizers
• Humidity control issues
Custom CRAH Unit (Large)
Example custom CRAH unit comparison

<table>
<thead>
<tr>
<th></th>
<th>Option 1</th>
<th>Option 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Std CRAC</td>
<td>Custom Model 1</td>
</tr>
<tr>
<td>Budget Cost</td>
<td>$16,235</td>
<td>$23,000</td>
</tr>
<tr>
<td>Number of units</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>net total cooling (btuh)</td>
<td>434,900</td>
<td>410,000</td>
</tr>
<tr>
<td>net sensible (btuh)</td>
<td>397,400</td>
<td>399,000</td>
</tr>
<tr>
<td>sensible (tons)</td>
<td>33.1</td>
<td>33.3</td>
</tr>
<tr>
<td>CFM</td>
<td>16,500</td>
<td>25,000</td>
</tr>
<tr>
<td>SAT</td>
<td>49.90</td>
<td>59.30</td>
</tr>
<tr>
<td>airside dT</td>
<td>25.10</td>
<td>15.70</td>
</tr>
<tr>
<td>Internal SP</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>no. fans</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>fan type</td>
<td>Centrifugal</td>
<td>Plenum</td>
</tr>
<tr>
<td>no. motors</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>HP/motor</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>total HP</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>BHP/motor</td>
<td>15</td>
<td>4.7</td>
</tr>
<tr>
<td>Unit BHP</td>
<td>15</td>
<td>14.1</td>
</tr>
<tr>
<td>unit width</td>
<td>122</td>
<td>122</td>
</tr>
<tr>
<td>depth</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>height</td>
<td>76</td>
<td>156</td>
</tr>
<tr>
<td>filter type</td>
<td>ASHRAE 20%</td>
<td>MERV 13</td>
</tr>
<tr>
<td>Water PD (ft)</td>
<td>13.5 ft</td>
<td>11.1</td>
</tr>
<tr>
<td>CHW dT</td>
<td>14F</td>
<td>20</td>
</tr>
<tr>
<td>GPM</td>
<td>66.80</td>
<td>44.00</td>
</tr>
<tr>
<td>Total GPM</td>
<td>1,403</td>
<td>924</td>
</tr>
<tr>
<td>Total BHP</td>
<td>315</td>
<td>275</td>
</tr>
</tbody>
</table>
Example CRAH Unit Comparison

- 34% less water flow
- 13% less fan energy
 - More if you consider the supply air temperature and airflow issues
- Excess fan capacity on new units
- 36% higher cost for units, but
 - Fewer piping connections
 - Fewer electrical connections
 - Fewer control panels
 - No need for control gateway
 - Can use the existing distribution piping and pumps (case study)
 - Can use high quality sensors and place them where they make sense
- Possibly less turbulence at discharge?
Best HVAC Practices

- Air Management
- Air Economizers
- Humidification Control
- Centralized Air Handlers
- Low Pressure Drop Systems
- Fan Efficiency
- Cooling Plant Optimization
- Water Side Economizer
- Variable Speed Chillers
- Variable Speed Pumping
- Direct Liquid Cooling
Best Practices—Cross-Cutting and Misc. Issues

- Motor efficiency
- Right sizing
- Variable speed drives
- Lighting
- Maintenance
- Continuous Commissioning and Benchmarking
- Heat Recovery
- Building Envelope
- Redundancy Strategies
- Methods of charging for space and power
Best air delivery practices

- Arrange racks in hot aisle/cold aisle configuration
- Try to match or exceed server airflow by aisle
 - Get thermal report data from IT if possible
 - Plan for worst case
- Get variable speed or two speed fans on servers if possible
- Provide variable airflow fans for AC unit supply
- Consider using air handlers rather than CRACs for improved performance
- Use overhead supply where possible
- Provide aisle capping (preferably cold aisles, refer to LBNL presentation for more details)
- Plug floor leaks and provide blank off plates in racks
- Draw return from as high as possible
- Use CFD to inform design and operation
Airflow design disjoint

- IT departments select servers and racks – each having airflow requirements
- Engineers size the facility fans and cooling capacity
- What’s missing in this picture?